core/vnl/vnl_erf.h
Go to the documentation of this file.
00001 // This is core/vnl/vnl_erf.h
00002 #ifndef vnl_erf_h_
00003 #define vnl_erf_h_
00004 //:
00005 // \file
00006 // \brief Error Function (erf) approximations
00007 // \author Tim Cootes, Ian Scott
00008 
00009 #include <vnl/vnl_gamma.h>
00010 #include <vnl/vnl_math.h>
00011 
00012 //: The Error function.
00013 // erf(x) = (2/sqrt(pi)) Integral from 0 to x (exp(-t^2) dt)
00014 // \note the output ranges from -1 to 1, and vnl_erf(0) = 0.
00015 inline double vnl_erf(double x)
00016 { return (x<0)?-vnl_gamma_p(0.5,x*x):vnl_gamma_p(0.5,x*x); }
00017 
00018 //: The Complementary Error function.
00019 // erfc(x) = 1 - erf(x) = 1 - (2/sqrt(pi)) Integral from 0 to x (exp(-t^2) dt)
00020 // This value is useful for large x, when erf(x) ~= 1 and erfc(x) < eps.
00021 // \note the output ranges from 0 to 2, and vnl_erfc(0) = 1.
00022 double vnl_erfc(double x);
00023 
00024 //: The Scaled Complementary Error function.
00025 // erfc_scaled(x) = exp(x^2) * erfc(x)
00026 // This value is useful for very large x, where erf and erfc returns
00027 // respectively ~1 and ~0.
00028 // It can be approximated by (1/sqrt(pi)) * (1/x)
00029 inline double vnl_scaled_erfc(double x)
00030 { return (vnl_math::two_over_sqrtpi/2.)*(1./x); }
00031 
00032 #endif // vnl_erf_h_