A Support Vector Machine Binary Classifier. More...
#include <clsfy_rbf_svm.h>

Public Member Functions | |
| clsfy_rbf_svm () | |
| Dflt constructor. | |
| virtual | ~clsfy_rbf_svm () |
| Destructor. | |
| virtual unsigned | classify (const vnl_vector< double > &input) const |
| Classify the input vector. | |
| virtual void | class_probabilities (vcl_vector< double > &outputs, const vnl_vector< double > &input) const |
| Return the probability the input being in each class. | |
| virtual double | log_l (const vnl_vector< double > &input) const |
| Log likelihood of being in class (binary classifiers only). | |
| virtual void | set (const vcl_vector< vnl_vector< double > > &supportVectors, const vcl_vector< double > &lagrangianAlphas, const vcl_vector< unsigned > &labels, double RBFWidth, double bias) |
| Set the internal values defining the classifier. | |
| double | rbf_width () const |
| The 1st standard deviation width of the RBF kernel. | |
| unsigned | n_support_vectors () const |
| The number of support vectors. | |
| double | kernel (const vnl_vector< double > &v1, const vnl_vector< double > &v2) const |
| The kernel function. | |
| double | bias () const |
| The SVM function bias. | |
| const vcl_vector< double > & | lagrangians () const |
| The Lagrange multipliers. | |
| const vcl_vector< vnl_vector < double > > & | support_vectors () const |
| The support vectors. | |
| virtual unsigned | n_classes () const |
| The number of possible output classes. | |
| virtual unsigned | n_dims () const |
| The dimensionality of input vectors. | |
| short | version_no () const |
| Return the class's IO version number. | |
| virtual vcl_string | is_a () const |
| Name of the class. | |
| virtual bool | is_class (vcl_string const &s) const |
| Name of the class. | |
| virtual clsfy_classifier_base * | clone () const |
| Create a copy on the heap and return base class pointer. | |
| virtual void | print_summary (vcl_ostream &os) const |
| Print class to os. | |
| virtual void | b_write (vsl_b_ostream &bfs) const |
| Save class to binary file stream. | |
| virtual void | b_read (vsl_b_istream &bfs) |
| Load class from binary file stream. | |
| virtual void | classify_many (vcl_vector< unsigned > &outputs, mbl_data_wrapper< vnl_vector< double > > &inputs) const |
| Classify many input vectors. | |
Protected Member Functions | |
| void | calculate_targets () |
| Set the private target member values to the correct value. | |
| double | localEuclideanDistanceSq (const vnl_vector< double > &a, const vnl_vector< double > &b) const |
| Calculate the contribution of a single support vector to the classifier;. | |
Protected Attributes | |
| double | upper_target_ |
| the starting upper bound. | |
| double | lower_target_ |
| the starting lower bound. | |
| vcl_vector< vnl_vector< double > > | supports_ |
| The support vectors. | |
| vcl_vector< double > | lagrangians_ |
| The Lagrangian multipliers. | |
| double | bias_ |
| The offset bias. | |
| double | gamma_ |
A Support Vector Machine Binary Classifier.
Definition at line 21 of file clsfy_rbf_svm.h.
| clsfy_rbf_svm::clsfy_rbf_svm | ( | ) |
Dflt constructor.
Definition at line 20 of file clsfy_rbf_svm.cxx.
| clsfy_rbf_svm::~clsfy_rbf_svm | ( | ) | [virtual] |
Destructor.
Definition at line 26 of file clsfy_rbf_svm.cxx.
| void clsfy_rbf_svm::b_read | ( | vsl_b_istream & | bfs | ) | [virtual] |
Load class from binary file stream.
Implements clsfy_classifier_base.
Definition at line 192 of file clsfy_rbf_svm.cxx.
| void clsfy_rbf_svm::b_write | ( | vsl_b_ostream & | bfs | ) | const [virtual] |
Save class to binary file stream.
Implements clsfy_classifier_base.
Definition at line 181 of file clsfy_rbf_svm.cxx.
| double clsfy_rbf_svm::bias | ( | ) | const [inline] |
The SVM function bias.
Definition at line 91 of file clsfy_rbf_svm.h.
| void clsfy_rbf_svm::calculate_targets | ( | ) | [protected] |
Set the private target member values to the correct value.
Definition at line 103 of file clsfy_rbf_svm.cxx.
| void clsfy_rbf_svm::class_probabilities | ( | vcl_vector< double > & | outputs, |
| const vnl_vector< double > & | input | ||
| ) | const [virtual] |
Return the probability the input being in each class.
output(i) i<<nClasses, contains the probability that the input is in class i; This are not strict probability values, since SVMs do not give Bayesian outputs. However their properties fit the requirements of a probability.
Implements clsfy_classifier_base.
Definition at line 88 of file clsfy_rbf_svm.cxx.
| unsigned clsfy_rbf_svm::classify | ( | const vnl_vector< double > & | input | ) | const [virtual] |
Classify the input vector.
returns 0 to indicate out of (or negative) class and one to indicate in class (or positive.)
Returns 0 to indicate out of (or negative) class and one to indicate in class (or positive.)
Reimplemented from clsfy_classifier_base.
Definition at line 44 of file clsfy_rbf_svm.cxx.
| void clsfy_classifier_base::classify_many | ( | vcl_vector< unsigned > & | outputs, |
| mbl_data_wrapper< vnl_vector< double > > & | inputs | ||
| ) | const [virtual, inherited] |
Classify many input vectors.
Definition at line 55 of file clsfy_classifier_base.cxx.
| clsfy_classifier_base * clsfy_rbf_svm::clone | ( | ) | const [virtual] |
Create a copy on the heap and return base class pointer.
Implements clsfy_classifier_base.
Definition at line 164 of file clsfy_rbf_svm.cxx.
| vcl_string clsfy_rbf_svm::is_a | ( | ) | const [virtual] |
Name of the class.
Reimplemented from clsfy_classifier_base.
Definition at line 143 of file clsfy_rbf_svm.cxx.
| bool clsfy_rbf_svm::is_class | ( | vcl_string const & | s | ) | const [virtual] |
Name of the class.
Reimplemented from clsfy_classifier_base.
Definition at line 150 of file clsfy_rbf_svm.cxx.
| double clsfy_rbf_svm::kernel | ( | const vnl_vector< double > & | v1, |
| const vnl_vector< double > & | v2 | ||
| ) | const |
The kernel function.
Uses the SVM's current value of RBFWidth.
Definition at line 33 of file clsfy_rbf_svm.cxx.
| const vcl_vector<double>& clsfy_rbf_svm::lagrangians | ( | ) | const [inline] |
The Lagrange multipliers.
The values corresponding to negative training vectors are pre-multiplied by -1. The array ordering corresponds to supportVectors()
Definition at line 96 of file clsfy_rbf_svm.h.
| double clsfy_rbf_svm::localEuclideanDistanceSq | ( | const vnl_vector< double > & | a, |
| const vnl_vector< double > & | b | ||
| ) | const [inline, protected] |
Calculate the contribution of a single support vector to the classifier;.
This local version is used so that the number of calls can be tested.
Definition at line 136 of file clsfy_rbf_svm.h.
| double clsfy_rbf_svm::log_l | ( | const vnl_vector< double > & | input | ) | const [virtual] |
Log likelihood of being in class (binary classifiers only).
class probability = vcl_exp(logL) / (1+vcl_exp(logL)
class probability = vcl_exp(logL) / (1+vcl_exp(logL)) This is not a strict log likelihood value, since SVMs do not give Bayesian outputs. However its properties fit the requirements of a log likelihood value.
Implements clsfy_classifier_base.
Definition at line 72 of file clsfy_rbf_svm.cxx.
| virtual unsigned clsfy_rbf_svm::n_classes | ( | ) | const [inline, virtual] |
The number of possible output classes.
Implements clsfy_classifier_base.
Definition at line 104 of file clsfy_rbf_svm.h.
| virtual unsigned clsfy_rbf_svm::n_dims | ( | ) | const [inline, virtual] |
The dimensionality of input vectors.
Implements clsfy_classifier_base.
Definition at line 107 of file clsfy_rbf_svm.h.
| unsigned clsfy_rbf_svm::n_support_vectors | ( | ) | const [inline] |
The number of support vectors.
Definition at line 84 of file clsfy_rbf_svm.h.
| void clsfy_rbf_svm::print_summary | ( | vcl_ostream & | os | ) | const [virtual] |
Print class to os.
Implements clsfy_classifier_base.
Definition at line 171 of file clsfy_rbf_svm.cxx.
| double clsfy_rbf_svm::rbf_width | ( | ) | const [inline] |
The 1st standard deviation width of the RBF kernel.
Really this could be better named as the RBF radius.
Definition at line 81 of file clsfy_rbf_svm.h.
| void clsfy_rbf_svm::set | ( | const vcl_vector< vnl_vector< double > > & | supportVectors, |
| const vcl_vector< double > & | lagrangianAlphas, | ||
| const vcl_vector< unsigned > & | labels, | ||
| double | RBFWidth, | ||
| double | bias | ||
| ) | [virtual] |
Set the internal values defining the classifier.
| supportVectors | |
| lagrangianAlphas | |
| labels | These should be 0 or 1. |
| RBFWidth | |
| bias |
Definition at line 120 of file clsfy_rbf_svm.cxx.
| const vcl_vector<vnl_vector<double> >& clsfy_rbf_svm::support_vectors | ( | ) | const [inline] |
The support vectors.
The array ordering corresponds to lagrangians()
Definition at line 100 of file clsfy_rbf_svm.h.
| short clsfy_rbf_svm::version_no | ( | ) | const |
Return the class's IO version number.
Definition at line 157 of file clsfy_rbf_svm.cxx.
double clsfy_rbf_svm::bias_ [protected] |
The offset bias.
Definition at line 39 of file clsfy_rbf_svm.h.
double clsfy_rbf_svm::gamma_ [protected] |
-1/(2 * sigma*sigma), where sigma = RBF kernel width.
Definition at line 42 of file clsfy_rbf_svm.h.
vcl_vector<double> clsfy_rbf_svm::lagrangians_ [protected] |
The Lagrangian multipliers.
The values have been pre-multiplied by the +/-1.0 depending on the support target.
Definition at line 36 of file clsfy_rbf_svm.h.
double clsfy_rbf_svm::lower_target_ [protected] |
the starting lower bound.
If the function sum falls below this value, the decision will definitely be 0.
Definition at line 29 of file clsfy_rbf_svm.h.
vcl_vector<vnl_vector<double> > clsfy_rbf_svm::supports_ [protected] |
The support vectors.
Definition at line 32 of file clsfy_rbf_svm.h.
double clsfy_rbf_svm::upper_target_ [protected] |
the starting upper bound.
If the function sum exceeds this value, the decision will definitely be 1.
Definition at line 26 of file clsfy_rbf_svm.h.
1.7.5.1