contrib/mul/clsfy/clsfy_adaboost_sorted_builder.cxx [code] | Functions to train classifiers using AdaBoost algorithm |
contrib/mul/clsfy/clsfy_adaboost_sorted_builder.h [code] | Describe a concrete classifier |
contrib/mul/clsfy/clsfy_adaboost_trainer.cxx [code] | Functions to train classifiers using AdaBoost algorithm |
contrib/mul/clsfy/clsfy_adaboost_trainer.h [code] | Functions to train classifiers using AdaBoost algorithm |
contrib/mul/clsfy/clsfy_add_all_loaders.cxx [code] | |
contrib/mul/clsfy/clsfy_add_all_loaders.h [code] | |
contrib/mul/clsfy/clsfy_binary_1d_wrapper.cxx [code] | Wrap a classifier_1d in general classifier_base derivative |
contrib/mul/clsfy/clsfy_binary_1d_wrapper.h [code] | Wrap a classifier_1d in general classifier_base derivative |
contrib/mul/clsfy/clsfy_binary_1d_wrapper_builder.cxx [code] | Wrap a builder_1d in general builder_base derivative |
contrib/mul/clsfy/clsfy_binary_1d_wrapper_builder.h [code] | Wrap a builder_1d in general builder_base derivative |
contrib/mul/clsfy/clsfy_binary_hyperplane.cxx [code] | Implement a binary linear classifier |
contrib/mul/clsfy/clsfy_binary_hyperplane.h [code] | Describe a linear binary classifier |
contrib/mul/clsfy/clsfy_binary_hyperplane_gmrho_builder.cxx [code] | Implement a two-class output linear classifier builder using a Geman-McClure robust error function |
contrib/mul/clsfy/clsfy_binary_hyperplane_gmrho_builder.h [code] | Builder for linear 2-state classifier, using a sigmoidal Geman-McClure rho function |
contrib/mul/clsfy/clsfy_binary_hyperplane_logit_builder.cxx [code] | Linear classifier builder using a logit loss function |
contrib/mul/clsfy/clsfy_binary_hyperplane_logit_builder.h [code] | Linear classifier builder using a logit loss function |
contrib/mul/clsfy/clsfy_binary_hyperplane_ls_builder.cxx [code] | Implement a two-class output linear classifier builder |
contrib/mul/clsfy/clsfy_binary_hyperplane_ls_builder.h [code] | Describe a binary linear classifier builder |
contrib/mul/clsfy/clsfy_binary_pdf_classifier.cxx [code] | |
contrib/mul/clsfy/clsfy_binary_pdf_classifier.h [code] | Describe a classifier based on a single pdf |
contrib/mul/clsfy/clsfy_binary_threshold_1d.cxx [code] | Simplest possible 1D classifier: A single thresholding function |
contrib/mul/clsfy/clsfy_binary_threshold_1d.h [code] | Simplest possible 1D classifier: A single thresholding function |
contrib/mul/clsfy/clsfy_binary_threshold_1d_builder.cxx [code] | |
contrib/mul/clsfy/clsfy_binary_threshold_1d_builder.h [code] | Describe a concrete classifier builder for scalar data |
contrib/mul/clsfy/clsfy_binary_threshold_1d_gini_builder.cxx [code] | |
contrib/mul/clsfy/clsfy_binary_threshold_1d_gini_builder.h [code] | Builder of 1d threshold using gini index |
contrib/mul/clsfy/clsfy_binary_tree.cxx [code] | Binary tree classifier |
contrib/mul/clsfy/clsfy_binary_tree.h [code] | Binary tree classifier |
contrib/mul/clsfy/clsfy_binary_tree_builder.cxx [code] | Implement a binary_tree classifier builder |
contrib/mul/clsfy/clsfy_binary_tree_builder.h [code] | Build a binary tree classifier |
contrib/mul/clsfy/clsfy_builder_1d.cxx [code] | Describe an abstract classifier builder for scalar data |
contrib/mul/clsfy/clsfy_builder_1d.h [code] | Describe an abstract classifier builder for scalar data |
contrib/mul/clsfy/clsfy_builder_base.cxx [code] | Implement bits of an abstract classifier builder |
contrib/mul/clsfy/clsfy_builder_base.h [code] | Describe an abstract classifier |
contrib/mul/clsfy/clsfy_classifier_1d.cxx [code] | Describe an abstract classifier of 1D data |
contrib/mul/clsfy/clsfy_classifier_1d.h [code] | Describe an abstract classifier of 1D data |
contrib/mul/clsfy/clsfy_classifier_base.cxx [code] | Implement bits of an abstract classifier |
contrib/mul/clsfy/clsfy_classifier_base.h [code] | Describe an abstract classifier |
contrib/mul/clsfy/clsfy_direct_boost.cxx [code] | Classifier using adaboost on combinations of simple 1D classifiers |
contrib/mul/clsfy/clsfy_direct_boost.h [code] | Classifier using adaboost on combinations of simple 1D classifiers |
contrib/mul/clsfy/clsfy_direct_boost_builder.cxx [code] | Functions to train classifiers using AdaBoost algorithm |
contrib/mul/clsfy/clsfy_direct_boost_builder.h [code] | Describe a concrete classifier |
contrib/mul/clsfy/clsfy_k_nearest_neighbour.cxx [code] | |
contrib/mul/clsfy/clsfy_k_nearest_neighbour.h [code] | Describe a KNN classifier |
contrib/mul/clsfy/clsfy_knn_builder.cxx [code] | Implement a knn classifier builder |
contrib/mul/clsfy/clsfy_knn_builder.h [code] | Describe a knn classifier builder |
contrib/mul/clsfy/clsfy_logit_loss_function.cxx [code] | Loss function for logit of linear classifier |
contrib/mul/clsfy/clsfy_logit_loss_function.h [code] | Loss function for logit of linear classifier |
contrib/mul/clsfy/clsfy_mean_square_1d.cxx [code] | Simplest possible 1D classifier: A single thresholding function |
contrib/mul/clsfy/clsfy_mean_square_1d.h [code] | Simplest possible 1D classifier: A single thresholding function |
contrib/mul/clsfy/clsfy_mean_square_1d_builder.cxx [code] | |
contrib/mul/clsfy/clsfy_mean_square_1d_builder.h [code] | Describe a concrete classifier builder for scalar data |
contrib/mul/clsfy/clsfy_null_builder.cxx [code] | Implement a null classifier builder |
contrib/mul/clsfy/clsfy_null_builder.h [code] | Describe a knn classifier builder |
contrib/mul/clsfy/clsfy_null_classifier.cxx [code] | Implement a null classifier |
contrib/mul/clsfy/clsfy_null_classifier.h [code] | Describe a null classifier |
contrib/mul/clsfy/clsfy_parzen_builder.cxx [code] | Implement a Parzen window classifier builder |
contrib/mul/clsfy/clsfy_parzen_builder.h [code] | Describe a Parzen window classifier builder |
contrib/mul/clsfy/clsfy_random_builder.cxx [code] | Implement a random classifier builder |
contrib/mul/clsfy/clsfy_random_builder.h [code] | Describe a random classifier builder |
contrib/mul/clsfy/clsfy_random_classifier.cxx [code] | Implement a random classifier |
contrib/mul/clsfy/clsfy_random_classifier.h [code] | Describe a random classifier |
contrib/mul/clsfy/clsfy_random_forest.cxx [code] | Random forest classifier |
contrib/mul/clsfy/clsfy_random_forest.h [code] | Binary tree classifier |
contrib/mul/clsfy/clsfy_random_forest_builder.cxx [code] | Implement a random_forest classifier builder |
contrib/mul/clsfy/clsfy_random_forest_builder.h [code] | Build a random forest classifier |
contrib/mul/clsfy/clsfy_rbf_parzen.cxx [code] | |
contrib/mul/clsfy/clsfy_rbf_parzen.h [code] | Describe a Parzen window classifier |
contrib/mul/clsfy/clsfy_rbf_svm.cxx [code] | Implement a RBF Support Vector Machine |
contrib/mul/clsfy/clsfy_rbf_svm.h [code] | Describe a RBF Support Vector Machine |
contrib/mul/clsfy/clsfy_rbf_svm_smo_1_builder.cxx [code] | Implement an interface to SMO algorithm SVM builder and additional logic |
contrib/mul/clsfy/clsfy_rbf_svm_smo_1_builder.h [code] | Describe an interface to an SMO SVM builder and additional logic |
contrib/mul/clsfy/clsfy_simple_adaboost.cxx [code] | Classifier using adaboost on combinations of simple 1D classifiers |
contrib/mul/clsfy/clsfy_simple_adaboost.h [code] | Classifier using adaboost on combinations of simple 1D classifiers |
contrib/mul/clsfy/clsfy_smo_1.cxx [code] | Sequential Minimum Optimisation algorithm This code is based on the C++ code of Xianping Ge, ( http://www.ics.uci.edu/~xge ) which he kindly put in the public domain. That code was in turn based on the algorithms of John Platt, ( http://research.microsoft.com/~jplatt ) described in Platt, J. C. (1998). Fast Training of Support Vector Machines Using Sequential Minimal Optimisation. In Advances in Kernel Methods - Support Vector Learning. B. Scholkopf, C. Burges and A. Smola, MIT Press: 185-208. and other papers |
contrib/mul/clsfy/clsfy_smo_1.h [code] | Sequential Minimum Optimisation algorithm |
contrib/mul/clsfy/clsfy_smo_base.cxx [code] | Sequential Minimum Optimisation algorithm This code is based on the C++ code of Xianping Ge, ( http://www.ics.uci.edu/~xge ) which he kindly put in the public domain. That code was in turn based on the algorithms of John Platt, ( http://research.microsoft.com/~jplatt ) described in Platt, J. C. (1998). Fast Training of Support Vector Machines Using Sequential Minimal Optimisation. In Advances in Kernel Methods - Support Vector Learning. B. Scholkopf, C. Burges and A. Smola, MIT Press: 185-208. and other papers |
contrib/mul/clsfy/clsfy_smo_base.h [code] | Sequential Minimum Optimisation algorithm |