Multi-variate Gaussian PDF, with a diagonal covariance matrix. More...
#include <vpdfl_axis_gaussian.h>

| Public Member Functions | |
| vpdfl_axis_gaussian () | |
| virtual | ~vpdfl_axis_gaussian () | 
| void | set (const vnl_vector< double > &mean, const vnl_vector< double > &var) | 
| double | log_k () const | 
| Constant offset for log probability. | |
| const vnl_vector< double > & | sd () const | 
| SD for each dimension. | |
| virtual double | log_p (const vnl_vector< double > &x) const | 
| Log of probability density at x. | |
| virtual void | gradient (vnl_vector< double > &g, const vnl_vector< double > &x, double &p) const | 
| Gradient and value of PDF at x. | |
| virtual void | gradient_logp (vnl_vector< double > &g, const vnl_vector< double > &x) const | 
| Gradient and value of log(p(x)) at x. | |
| virtual vpdfl_sampler_base * | new_sampler () const | 
| Create a sampler object on the heap. | |
| virtual double | log_prob_thresh (double pass_proportion) const | 
| Compute threshold for PDF to pass a given proportion. | |
| virtual void | nearest_plausible (vnl_vector< double > &x, double log_p_min) const | 
| Compute nearest point to x which has a density above a threshold. | |
| short | version_no () const | 
| Version number for I/O. | |
| virtual vcl_string | is_a () const | 
| Name of the class. | |
| virtual bool | is_class (vcl_string const &s) const | 
| Does the name of the class match the argument?. | |
| virtual vpdfl_pdf_base * | clone () const | 
| Create a copy on the heap and return base class pointer. | |
| virtual void | print_summary (vcl_ostream &os) const | 
| Print class to os. | |
| virtual void | b_write (vsl_b_ostream &bfs) const | 
| Save class to binary file stream. | |
| virtual void | b_read (vsl_b_istream &bfs) | 
| Load class from binary file stream. | |
| const vnl_vector< double > & | mean () const | 
| Mean of distribution. | |
| const vnl_vector< double > & | variance () const | 
| Variance of each dimension. | |
| int | n_dims () const | 
| Number of dimensions. | |
| virtual int | n_peaks () const | 
| Number of peaks of distribution. | |
| virtual const vnl_vector < double > & | peak (int) const | 
| Position of the i'th peak. | |
| virtual double | operator() (const vnl_vector< double > &x) const | 
| Probability density at x. | |
| virtual bool | is_valid_pdf () const | 
| Return true if the object represents a valid PDF. | |
| Protected Member Functions | |
| void | set_mean (const vnl_vector< double > &m) | 
| void | set_variance (const vnl_vector< double > &v) | 
| Private Member Functions | |
| void | calcLogK () | 
| void | calcSD () | 
| double | dx_sigma_dx (const vnl_vector< double > &x) const | 
| Calculate (x-mu)' * Sigma^-1 * (x-mu). | |
| Private Attributes | |
| double | log_k_ | 
| vnl_vector< double > | sd_ | 
Multi-variate Gaussian PDF, with a diagonal covariance matrix.
Definition at line 23 of file vpdfl_axis_gaussian.h.
| vpdfl_axis_gaussian::vpdfl_axis_gaussian | ( | ) | 
Definition at line 27 of file vpdfl_axis_gaussian.cxx.
| vpdfl_axis_gaussian::~vpdfl_axis_gaussian | ( | ) |  [virtual] | 
Definition at line 35 of file vpdfl_axis_gaussian.cxx.
| void vpdfl_axis_gaussian::b_read | ( | vsl_b_istream & | bfs | ) |  [virtual] | 
Load class from binary file stream.
Implements vpdfl_pdf_base.
Definition at line 238 of file vpdfl_axis_gaussian.cxx.
| void vpdfl_axis_gaussian::b_write | ( | vsl_b_ostream & | bfs | ) | const  [virtual] | 
Save class to binary file stream.
Implements vpdfl_pdf_base.
Definition at line 230 of file vpdfl_axis_gaussian.cxx.
| void vpdfl_axis_gaussian::calcLogK | ( | ) |  [private] | 
Definition at line 41 of file vpdfl_axis_gaussian.cxx.
| void vpdfl_axis_gaussian::calcSD | ( | ) |  [private] | 
Definition at line 52 of file vpdfl_axis_gaussian.cxx.
| vpdfl_pdf_base * vpdfl_axis_gaussian::clone | ( | ) | const  [virtual] | 
Create a copy on the heap and return base class pointer.
Caller is responsible for deletion
Implements vpdfl_pdf_base.
Definition at line 216 of file vpdfl_axis_gaussian.cxx.
| double vpdfl_axis_gaussian::dx_sigma_dx | ( | const vnl_vector< double > & | x | ) | const  [private] | 
Calculate (x-mu)' * Sigma^-1 * (x-mu).
Mahalanobis distance squared from the mean.
Definition at line 73 of file vpdfl_axis_gaussian.cxx.
| void vpdfl_axis_gaussian::gradient | ( | vnl_vector< double > & | g, | 
| const vnl_vector< double > & | x, | ||
| double & | p | ||
| ) | const  [virtual] | 
Gradient and value of PDF at x.
Computes gradient of PDF at x, and returns the prob at x in p
Implements vpdfl_pdf_base.
Definition at line 104 of file vpdfl_axis_gaussian.cxx.
| void vpdfl_axis_gaussian::gradient_logp | ( | vnl_vector< double > & | g, | 
| const vnl_vector< double > & | x | ||
| ) | const  [virtual] | 
Gradient and value of log(p(x)) at x.
Computes gradient df/dx of f(x)=log(p(x)) at x. Result is vector of same dimensionality as x.
Computes gradient df/dx of f(x)=log(p(x)) at x.
Reimplemented from vpdfl_pdf_base.
Definition at line 134 of file vpdfl_axis_gaussian.cxx.
| vcl_string vpdfl_axis_gaussian::is_a | ( | ) | const  [virtual] | 
Name of the class.
Reimplemented from vpdfl_pdf_base.
Definition at line 194 of file vpdfl_axis_gaussian.cxx.
| bool vpdfl_axis_gaussian::is_class | ( | vcl_string const & | s | ) | const  [virtual] | 
Does the name of the class match the argument?.
Reimplemented from vpdfl_pdf_base.
Definition at line 202 of file vpdfl_axis_gaussian.cxx.
| bool vpdfl_pdf_base::is_valid_pdf | ( | ) | const  [virtual, inherited] | 
Return true if the object represents a valid PDF.
This will return false, if n_dims() is 0, for example just ofter default construction.
Reimplemented in vpdfl_mixture.
Definition at line 141 of file vpdfl_pdf_base.cxx.
| double vpdfl_axis_gaussian::log_k | ( | ) | const  [inline] | 
Constant offset for log probability.
Definition at line 45 of file vpdfl_axis_gaussian.h.
| double vpdfl_axis_gaussian::log_p | ( | const vnl_vector< double > & | x | ) | const  [virtual] | 
Log of probability density at x.
Implements vpdfl_pdf_base.
Definition at line 99 of file vpdfl_axis_gaussian.cxx.
| double vpdfl_axis_gaussian::log_prob_thresh | ( | double | pass_proportion | ) | const  [virtual] | 
Compute threshold for PDF to pass a given proportion.
Reimplemented from vpdfl_pdf_base.
Definition at line 163 of file vpdfl_axis_gaussian.cxx.
| const vnl_vector<double>& vpdfl_pdf_base::mean | ( | ) | const  [inline, inherited] | 
Mean of distribution.
Definition at line 46 of file vpdfl_pdf_base.h.
| int vpdfl_pdf_base::n_dims | ( | ) | const  [inline, inherited] | 
Number of dimensions.
Definition at line 52 of file vpdfl_pdf_base.h.
| virtual int vpdfl_pdf_base::n_peaks | ( | ) | const  [inline, virtual, inherited] | 
Number of peaks of distribution.
Definition at line 55 of file vpdfl_pdf_base.h.
| void vpdfl_axis_gaussian::nearest_plausible | ( | vnl_vector< double > & | x, | 
| double | log_p_min | ||
| ) | const  [virtual] | 
Compute nearest point to x which has a density above a threshold.
If log_p(x)>log_p_min then x unchanged. Otherwise x is moved directly towards the mean (i.e. to the nearest plausible point using a Mahalanobis distance) until log_p(x)=log_p_min.
| x | This may be modified to the nearest plausible position. | 
| log_p_min | lower threshold for log_p(x) | 
Implements vpdfl_pdf_base.
Definition at line 171 of file vpdfl_axis_gaussian.cxx.
| vpdfl_sampler_base * vpdfl_axis_gaussian::new_sampler | ( | ) | const  [virtual] | 
Create a sampler object on the heap.
Caller is responsible for deletion.
Implements vpdfl_pdf_base.
Definition at line 155 of file vpdfl_axis_gaussian.cxx.
| double vpdfl_pdf_base::operator() | ( | const vnl_vector< double > & | x | ) | const  [virtual, inherited] | 
Probability density at x.
Reimplemented in vpdfl_mixture, and vpdfl_gaussian_kernel_pdf.
Definition at line 34 of file vpdfl_pdf_base.cxx.
| virtual const vnl_vector<double>& vpdfl_pdf_base::peak | ( | int | ) | const  [inline, virtual, inherited] | 
Position of the i'th peak.
Definition at line 58 of file vpdfl_pdf_base.h.
| void vpdfl_axis_gaussian::print_summary | ( | vcl_ostream & | os | ) | const  [virtual] | 
Print class to os.
Implements vpdfl_pdf_base.
Definition at line 223 of file vpdfl_axis_gaussian.cxx.
| const vnl_vector<double>& vpdfl_axis_gaussian::sd | ( | ) | const  [inline] | 
SD for each dimension.
Definition at line 48 of file vpdfl_axis_gaussian.h.
| void vpdfl_axis_gaussian::set | ( | const vnl_vector< double > & | mean, | 
| const vnl_vector< double > & | var | ||
| ) | 
Definition at line 60 of file vpdfl_axis_gaussian.cxx.
| void vpdfl_pdf_base::set_mean | ( | const vnl_vector< double > & | m | ) |  [inline, protected, inherited] | 
Reimplemented in vpdfl_gaussian.
Definition at line 35 of file vpdfl_pdf_base.h.
| void vpdfl_pdf_base::set_variance | ( | const vnl_vector< double > & | v | ) |  [inline, protected, inherited] | 
Definition at line 36 of file vpdfl_pdf_base.h.
| const vnl_vector<double>& vpdfl_pdf_base::variance | ( | ) | const  [inline, inherited] | 
Variance of each dimension.
Definition at line 49 of file vpdfl_pdf_base.h.
| short vpdfl_axis_gaussian::version_no | ( | ) | const | 
Version number for I/O.
Reimplemented from vpdfl_pdf_base.
Definition at line 209 of file vpdfl_axis_gaussian.cxx.
| double vpdfl_axis_gaussian::log_k_  [private] | 
Definition at line 25 of file vpdfl_axis_gaussian.h.
| vnl_vector<double> vpdfl_axis_gaussian::sd_  [private] | 
Definition at line 26 of file vpdfl_axis_gaussian.h.
 1.7.5.1
 1.7.5.1